Выпуклый многогранник называется правильным если

Выпуклый многогранник называется правильным если

Выпуклый многогранник называется правильным, если его гранями являются равные правильные многоугольники, и в каждой вершине сходится одинаковое число граней.
Рассмотрим возможные правильные многогранники и прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники (рис. 1,а). В каждой ее вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также тетраэдром, что в переводе с греческого языка означает четырехгранник.

Многогранник, гранями которого являются правильные треугольники, и в каждой вершине сходится четыре грани, изображен на рисунке 1,в. Его поверхность состоит из восьми правильных треугольников, поэтому он называется октаэдром.
Многогранник, в каждой вершине которого сходится пять правильных треугольников, изображен на рисунке 1,г. Его поверхность состоит из двадцати правильных треугольников, поэтому он называется икосаэдром.
Заметим, что поскольку в вершинах выпуклого многогранника не может сходиться более пяти правильных треугольников, то других правильных многогранников, гранями которых являются правильные треугольники, не существует.
Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба (рис. 1,б), других правильных многогранников, у которых гранями являются квадраты не существует. Куб имеет шесть граней и поэтому называется также гексаэдром.
Многогранник, гранями которого являются правильные пятиугольники, и в каждой вершине сходится три грани, изображен на рисунке 1,д. Его поверхность состоит из двенадцати правильных пятиугольников, поэтому он называется додекаэдром.
Поскольку в вершинах выпуклого многогранника не могут сходиться правильные многоугольники с числом сторон больше пяти, то, используя теорему Коши о жесткости выпуклого многогранника, получаем, что других правильных многогранников не существует, и таким образом, имеется только пять правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.
Рассмотрим понятие правильного многогранника с точки зрения топологии науки, изучающей свойства фигур, не зависящих от различных деформаций без разрывов. С этой точки зрения, например, все треугольники эквивалентны, так как один треугольник всегда может быть получен из любого другого соответствующим сжатием или растяжением сторон. Вообще все многоугольники с одинаковым числом сторон эквивалентны по той же причине.
Как в такой ситуации определить понятие топологически правильного многогранника? Иначе говоря, какие свойства в определении правильного многогранника являются топологически устойчивыми и их следует оставить, а какие не являются топологически устойчивыми и их следует отбросить.
В определении правильного многогранника количество сторон и количество граней являются топологически устойчивыми, т.е. не меняющимися при непрерывных деформациях. Правильность же многоугольников не является топологически устойчивым свойством. Таким образом, мы приходим к следующему определению.
Выпуклый многогранник называется топологически правильным, если его гранями являются многоугольники с одним и тем же числом сторон и в каждой вершине сходится одинаковое число граней.
Например, все треугольные пирамиды являются топологически правильными многогранниками, эквивалентными между собой. Все параллелепипеды также являются эквивалентными между собой топологически правильными многогранниками. Четырехугольные пирамиды не являются топологически правильными многогранниками.
Выясним вопрос о том, сколько существует не эквивалентных между собой топологически правильных многогранников.
Как мы знаем, существует только пять правильных многогранников: тетраэдр, куб, октаэдр, икосаэдр и додекаэдр. Казалось бы, топологически правильных многогранников должно быть гораздо больше. Однако оказывается, что никаких других топологически правильных многогранников, не эквивалентных уже известным правильным, не существует.
Для доказательства этого воспользуемся теоремой Эйлера. Пусть дан топологически правильный многогранник, гранями которого являются n — угольники, и в каждой вершине сходится m ребер. Ясно, что n и m больше или равны трем. Обозначим, как и раньше, В — число вершин, Р — число ребер и Г — число граней этого многогранника. Тогда

n Г = 2P; Г = ; mB = 2P; В = .

По теореме Эйлера, В — Р + Г = 2 и, следовательно,

Откуда Р = .
Из полученного равенства, в частности, следует, что должно выполняться неравенство 2n + 2mnm > 0, которое эквивалентно неравенству (n – 2)(m – 2)

В эпоху Возрождения большой интерес к формам правильных многогранников проявили скульпторы, архитекторы, художники. Леонардо да Винчи, например, увлекался теорией многогранников и часто изображал их на своих полотнах. Он проиллюстрировал изображениями правильных и полуправильных многогранников книгу своего друга монаха Луки Пачоли (1445-1514) «О божественной пропорции».

Другим знаменитым художником эпохи Возрождения, также увлекавшимся геометрией, был А. Дюрер. В его известной гравюре «Меланхолия» на переднем плане изображен додекаэдр. В 1525 году Дюрер написал трактат, в котором представил пять правильных многогранников, поверхности которых служат хорошими моделями перспективы.

Иоганн Кеплер (1571-1630) в своей работе «Тайна мироздания» в 1596 году, используя правильные многогранники, вывел принцип, которому подчиняются формы и размеры орбит планет Солнечной системы. Геометрия Солнечной системы, по Кеплеру, заключалась в следующем: «Земля (имеется в виду орбита Земли) есть мера всех орбит. Вокруг сферы Земли опишем додекаэдр. Описанная вокруг додекаэдра сфера есть сфера Марса. Вокруг сферы Марса опишем тетраэдр. Описанная вокруг тетраэдра сфера есть сфера Юпитера. Вокруг сферы Юпитера опишем куб. Описанная вокруг куба сфера есть сфера Сатурна. В сферу Земли вложим икосаэдр. Вписанная в него сфера есть сфера Венеры. В сферу Венеры вложим октаэдр. Вписанная в него сфера есть сфера Меркурия». Такая модель Солнечной системы получила название «Космического кубка» Кеплера (рис. 2)

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938 (или более поздние издания, например, 3-е изд., 1958). Книга VI. Многогранники. Дополнения: Глава V.
2. Александров А.Д. Выпуклые многогранники. – М.-Л.; 1950.
3. Болл У., Коксетер Г. Математические эссе и развлечения. – М.: Мир, 1986, с.142.
4. Долбилин Н.П. Жемчужины теории многогранников. – М.: МЦНМО, 2000, с.27-31.
5. Люстерник Л.А. Выпуклые фигуры и многогранники. – М.; 1956.
6. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949, с. 34, с.268.
7. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.
8. Энциклопедия элементарной математики. Книга IV. Геометрия. — М.; 1963, с. 382.
9. Яглом И.М., Болтянский В.Г. Выпуклые фигуры. – М.-Л.; 1951 /Библиотека математического кружка, выпуск 4.

Читать еще:  Как правильно делать массаж банками на животе

Правильные многогранники

Разделы: Математика

Цель урока: познакомить учащихся с новым типом выпуклых многогранников – правильными многогранниками.

Задачи урока:

  • Обучающие:
    • ввести понятие правильного многогранника;
    • рассмотреть свойства правильных многогранников.
  • Развивающие:
    • формировать пространственные представления учащихся;
    • формировать умения обобщать, систематизировать, видеть закономерности;
    • развивать монологическую речь учащихся.
  • Воспитательные:
    • формировать интерес к предмету;
    • показать связь геометрии и природы.

План урока:

1. Организационный момент.
2. Актуализация знаний.
3. Введение нового понятия, изучение правильных выпуклых многогранников.
4. Формула Эйлера (исследовательская работа класса).
5. Правильные многогранники на картинах великих художников.
6. Правильные многогранники в природе (сообщение учащегося).
7. Правильные многогранники в архитектуре.
8. Решение задач.
9. Подведение итога урока.
10. Домашнее задание.

Тема нашего урока: «Правильные выпуклые многогранники».

Откройте тетради, запишите сегодняшнее число и тему урока “ Правильные выпуклые многогранники”. Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к правильным многогранникам – удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Многогранник – это такое тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник называется правильным, если он лежит по одну сторону от плоскости любой его грани, т.е. является выпуклым, и все его грани есть равные правильные многоугольники.
Простой подсчет суммы углов при вершине правильного многогранника показывает, что существуют только пять правильных многогранников.

Форму правильных тел, по-видимому, подсказала древним грекам сама природа:

1) Кристаллы поваренной соли имеют форму куба;
2) Правильная форма алмаза – октаэдра;
3) Кристаллы пирита – додекаэдра.

Важным свойством правильных многогранников является существование для каждого из них вписанного и описанного шаров (сфер) таких, что поверхность вписанного шара касается центра каждой грани правильного многогранника, а поверхность описанного шара проходит через все его вершины. Центры этих шаров совпадают между собой и с центром соответствующего многогранника.

Два понятия в формулировке темы урока вам знакомы, многогранники и выпуклые.
Дайте определение многогранника
Какой многогранник называется выпуклым?

Нами уже использовались словосочетания «правильные призмы» и «правильные пирамиды». Оказывается, новая комбинация знакомых понятий образует совершенно новое с геометрической точки зрения понятие. Какие же выпуклые многогранники будем называть правильными? Послушайте внимательно определение.

Выпуклый многогранник называется правильным, если его грани являются правильными многогранниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.

Может показаться, что вторая часть определения является лишней и достаточно сказать, что выпуклый многогранник называется правильным, если его грани являются правильными многогранниками с одним и тем же числом сторон. Достаточно ли этого на самом деле?

Посмотрите на многогранник. (Демонстрируется модель многогранника, который получается из двух правильных тетраэдров, приклеенных друг к другу одной гранью). Оставляет ли он впечатление правильного многогранника? (Нет!) Посмотрим на его грани – правильные треугольники. Посчитаем число рёбер, сходящихся в каждой вершине. В некоторых вершинах сходятся три ребра, в некоторых – четыре. Вторая часть определения правильного выпуклого многогранника не выполняется и рассматриваемый многогранник, действительно, не является правильным. Таким образом, когда будете давать определение, помните об обеих его частях.

Всего существует пять видов правильных выпуклых многогранников. Их гранями являются правильные треугольники, правильные четырёхугольники (квадраты) и правильные пятиугольники.

Правильный тетраэдр составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.

Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°. Частный случай параллелепипеда и призмы.

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине – 240°.

Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300°.

Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:

«эдра» – грань;
«тетра» – 4;
«гекса» – 6;
«окта» – 8;
«икоса» – 20;
«додека» – 12.

Вам необходимо запомнить названия этих многогранников, уметь охарактеризовать каждый из них и доказать, что других видов правильных многогранников, кроме перечисленных пяти, нет.

Правильные многогранники иногда называют платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 – ок. 348 до н.э.). Платон считал, что мир строится из четырёх «стихий» – огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества – твёрдым, жидким, газообразным и пламенным. Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.
Это была одна из первых попыток ввести в науку идею систематизации.

Читать еще:  Как правильно вести автосервис

Исследовательская работа «Формула Эйлера»

Изучая любые многогранники, естественнее всего подсчитать, сколько у них граней, сколько рёбер и вершин. Подсчитаем и мы число указанных элементов Платоновых тел и занесём результаты в таблицу.

Анализируя таблицу № 1, возникает вопрос: «Нет ли закономерности в возрастании чисел в каждом столбце?» По-видимому, нет. Например, в столбце «грани» казалось бы просматривается закономерность (4 + 2 = 6, 6 + 2 = 8), но затем намеченная закономерность нарушается (8 + 2 1 12, 12 + 2 1 20). В столбце «вершины» нет даже стабильного возрастания.
Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12). В столбце «рёбра» закономерности тоже не видно.

Можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах “грани” и “вершины” (Г + В). Заполните четвертый столбец Г + В (число граней плюс число вершин).

Вот теперь закономерности может не заметить только “слепой”. Сформулируем её так: “Сумма числа граней и вершин равна числу рёбер, увеличенному на 2”, т.е. Г + В = Р + 2. Запишите в тетрадь.

Итак, мы вместе сделали открытие, мы “открыли” формулу, которая была подмечена уже Декартом в 1640 г., а позднее вновь открыта Эйлером (1752), имя которого с тех пор она носит. Формула Эйлера верна для любых выпуклых многогранников. Запомните эту формулу.

Хотя действительно “Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

О том, как использовали правильные многогранники в своих научных фантазиях учёные, нам расскажет Ф.И. (сообщение учащегося).

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах.

Сальвадор Дали на картине “Тайная вечеря” изобразил И.Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Знаменитый художник, увлекавшийся геометрией Альбрехт Дюрер (1471-1528) в известной гравюре “Меланхолия”, на переднем плане также изобразил додекаэдр.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр.
Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник.

Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень – икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию.

– Подходит к концу урок, подведём итоги.
– Что нового вы узнали сегодня на уроке?

Дома: № 72-75 склеить модели правильных многогранников на выбор.

Правильные многогранники

Выпуклый многогранник называется правильным, если все его грани — равные правильные многоугольники, и в каждой его вершине сходится одно и то же число ребер.

Все ребра правильного многогранника равны, все двугранные углы правильного многогранника равны, все многогранные углы правильного многогранника равны. Существует ровно пять выпуклых правильных многогранников:

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон, и в каждой вершине многогранника сходится одно и то же число ребер.

Все ребра правильного многогранника равны друг другу. Равны также все его двугранные углы, содержащие две грани с общим ребром.

Читать еще:  Как правильно использовать мочеприемник для девочек видео

Грани правильного многогранника могут быть либо равносторонними треугольниками, либо квадратами, либо правильными пятиугольниками. Действительно, угол правильного -угольника при не меньше . С другой стороны, при каждой вершине многогранника должно быть не менее трех плоских углов. Поэтому если бы существовал правильный многогранник, у которого грани – правильные n-угольники при , то сумма плоских углов при каждой вершине такого многогранника была бы не меньше чем . Но это невозможно, так как сумма всех плоских углов при каждой вершине выпуклого многогранника меньше .

По этой же причине каждая вершина правильного многогранника может быть вершиной либо трех, четырех или пяти равносторонних треугольников, либо трех квадратов, либо трех правильных пятиугольников. Других возможностей нет.

Правильный тетраэдр (четырехгранник) — многогранник, составленный из четырех правильных треугольников (рис.1а).

Правильный гексаэдр (шестигранник) или куб — многогранник, составленный из шести правильных четырехугольников (квадратов) (рис. 1б).

Правильный октаэдр (восьмигранник) — многогранник, составленный из восьми правильных треугольников (рис. 1в).

Правильный додекаэдр (двенадцатигранник) — многогранник, составленный из двенадцати правильных пятиугольников (рис. 1г).

Правильный икосаэдр (двадцатигранник) — многогранник, составленный из двадцати правильных треугольников (рис. 1д).

Что такое многогранник?

Многогранник — ( определение ) геометрическое тело, ограниченное со всех сторон плоскими многоугольниками — гранями.

Примеры многогранников:

Стороны граней называются ребрами, а концы ребер — вершинами. По числу граней различают 4-гранники, 5-гранники и т.д. Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой его грани. Многогранник называется правильным, если его грани правильные многоугольники (т.е. такие, у которых все стороны и углы равны) и все многогранные углы при вершинах равны. Существует пять видов правильных многогранников: тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

Многогранник в трехмерном пространстве (понятие многогранника) — совокупность конечного числа плоских многоугольников такая, что

1) каждая сторона одного является одновременно стороной другого (но только одного), называемого смежным с первым (по этой стороне);

2) от любого из многоугольников, составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого в свою очередь — к смежному с ним, и т.д.

Эти многоугольники называются гранями, их стороны ребрами, а их вершины — вершинами многогранника.

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой его грани.

Из этого определения следует, что все грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Поверхность выпуклого многогранника состоит из граней, которые лежат в разных плоскостях. При этом ребрами многогранника являются стороны многоугольников, вершинами многогранника – вершины граней, плоскими углами многогранника – углы многоугольников – граней.

Выпуклый многогранник, все вершины которого лежат в двух параллельных плоскостях, называется призматоидом. Призма, пирамида и усеченная пирамида – частные случаи призматоида. Все боковые грани призматоида являются треугольниками или четырехугольниками, причем четырехугольные грани – это трапеции или параллелограммы.

Популярное

Подвесной потолочный светильник или по-простому — люстра, ещё никогда не был так близок к точным математическим формам.

Архитектурные шедевры находятся в разных уголках земного шара и отражают особенности человеческой души. Тайные людские желания воплощаются в форме необыкновенных зданий. В.

Правильные многогранники, их всего пять: тетраэдр, октаэдр, куб (другое название гексаэдр).

Что будет, если плоскую геометрическую фигуру, например прямоугольник, начать быстро вращать относительно одной из его сторон? Одним лишь вращением мы можем.

Он круглый, но развёртку деталей для его сборки никто не отменял!

Можно ли представить икосаэдр в виде более простых многогранников?

Многогранники могут стать украшением вашего дома, создав изюминку в интерьере.

Выпуклый многогранник называется правильным если

Обозначения:

V — объем;
S полн — площадь полной поверхности;
S бок — площадь боковой поверхности;
S о — площадь основания;
P о — периметр основания;
P о — периметр перпендикулярного сечения;
l — длина ребра;
h — высота.

Формула Эйлера

N — число вершин , L — число ребер , F — число граней выпуклого многогранника.


Призма
— многранник, две грани которого — равные многоугольники, расположенные в параллельных плоскостях, а остальные — параллелограммы.


Параллелепипед
— призма, основание которой — параллелограмм.
Параллелепипед имеет шесть граней и все они — параллелограммы.

Пирамида — многранник, у которого одна грань n -угольник — основание пирамиды, а остальные боковые грани — треугольники с общей вершиной — вершиной пирамиды.


где k — апофема

Если в пирамиде провести сечение параллельное основанию, то тело, ограниченное этим сечением, основанием, и заключенной между ними боковой поверхностью пирамиды, называется усеченной пирамидой.


где S 1 и S 2 — площади оснований


где α — двугранный угол при ребре нижнего основания.

Правильные многогранники

Многогранник называется правильным, если все его грани — равные правильные многоугольники, а все многогранные углы имеют одинаковое число граней.

Все ребра правильного многогранника — равные отрезки, все плоские углы правильного многогранника также равны.

Существует пять различных правильных многогранников (выпуклых): правильный четырехгранник (правильный тетраэдр), правильный шестигранник (куб), правильный восьмигранник (правильный октаэдр), правильный двенадцатигранник (правильный додекаэдр), правильный двадцатигранник (правильный икосаэдр).

Обозначения:
а — длина ребра;
V — объем;
S бок — площадь боковой поверхности;
S полн — площадь полной поверхности;
R — радиус описанной сферы;
r — радиус вписанной сферы;
h — высота.


Тетраэдрчетыре грани — равносторонние равные треугольники. Тетраэдр имеет четыре вершины и шесть ребер

Читайте далее:
Ссылка на основную публикацию
Adblock
detector